Factorized Asymptotic Bayesian Hidden Markov Models
نویسندگان
چکیده
This paper addresses the issue of model selection for hidden Markov models (HMMs). We generalize factorized asymptotic Bayesian inference (FAB), which has been recently developed for model selection on independent hidden variables (i.e., mixture models), for time-dependent hidden variables. As with FAB in mixture models, FAB for HMMs is derived as an iterative lower bound maximization algorithm of a factorized information criterion (FIC). It inherits, from FAB for mixture models, several desirable properties for learning HMMs, such as asymptotic consistency of FIC with marginal log-likelihood, a shrinkage effect for hidden state selection, monotonic increase of the lower FIC bound through the iterative optimization. Further, it does not have a tunable hyper-parameter, and thus its model selection process can be fully automated. Experimental results shows that FAB outperforms states-of-the-art variational Bayesian HMM and non-parametric Bayesian HMM in terms of model selection accuracy and computational efficiency.
منابع مشابه
Factorized Asymptotic Bayesian Policy Search for POMDPs
This paper proposes a novel direct policy search (DPS) method with model selection for partially observed Markov decision processes (POMDPs). DPSs have been standard for learning POMDPs due to their computational efficiency and natural ability to maximize total rewards. An important open challenge for the best use of DPS methods is model selection, i.e., determination of the proper dimensionali...
متن کاملFactorized Asymptotic Bayesian Inference for Latent Feature Models
This paper extends factorized asymptotic Bayesian (FAB) inference for latent feature models (LFMs). FAB inference has not been applicable to models, including LFMs, without a specific condition on the Hessian matrix of a complete loglikelihood, which is required to derive a “factorized information criterion” (FIC). Our asymptotic analysis of the Hessian matrix of LFMs shows that FIC of LFMs has...
متن کاملBeyond similarity assessment: selecting the optimal model for sequence alignment via the Factorized Asymptotic Bayesian algorithm
Motivation Pair Hidden Markov Models (PHMMs) are probabilistic models used for pairwise sequence alignment, a quintessential problem in bioinformatics. PHMMs include three types of hidden states: match, insertion and deletion. Most previous studies have used one or two hidden states for each PHMM state type. However, few studies have examined the number of states suitable for representing seque...
متن کاملAsymptotic Bayesian Theory of Quickest Change Detection for Hidden Markov Models
In the 1960s, Shiryaev developed a Bayesian theory of change-point detection in the i.i.d. case, which was generalized in the beginning of the 2000s by Tartakovsky and Veeravalli for general stochastic models assuming a certain stability of the log-likelihood ratio process. Hidden Markov models represent a wide class of stochastic processes that are very useful in a variety of applications. In ...
متن کاملM ay 2 01 1 ASYMPTOTIC BEHAVIOUR OF APPROXIMATE BAYESIAN
Although approximate Bayesian computation (ABC) has become a popular technique for performing parameter estimation when the likelihood functions are analytically intractable there has not as yet been a complete investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the asymptotic properties of ABC based parameter estimators for h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.4679 شماره
صفحات -
تاریخ انتشار 2012